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Abstract
Long-term datasets can be particularly useful for parsing out factors influencing populations, yet few studies

have utilized continuous datasets to quantify population dynamics in bivalve molluscs. We used dynamic factor
analysis on a clam biomass dataset spanning 28 yr and five distinct regions in the southern Salish Sea to deter-
mine (1) if native intertidal clam populations exhibit synchrony and (2) what environmental covariates may be
correlated with these population trends. Once covariates were accounted for, the model with the most data sup-
port included three predominant trends to describe multidecadal change in clam biomass. Intraspecific syn-
chrony was highest among Saxidomus gigantea and Leukoma staminea populations, with no clear evidence of
covariance in Clinocardium nuttallii. Specifically, we quantified a pronounced decadal decline in L. staminea and
an increase in S. gigantea biomass on most beaches. No beaches showed synchrony in trends across all three
species, indicating that species-specific trends (regardless of location) were more common than beach-specific
trends (regardless of species). Seven environmental covariates were evaluated in their capacity to explain vari-
ability in annual mean biomass. Of these, the North Pacific Gyre Oscillation lagged 4 yr prior to the observation
year was most supported by the data in the best fitting model, implying that 4 yr old clam biomass is partially
determined by oceanographic processes affecting larval clams. Although results suggest large-scale density-
independent factors play a role in venerid clam population dynamics, it is also likely local factors account for
variability not explained by our model.

Research on long-term population dynamics of commer-
cially and ecologically important species is imperative for the
managers, policymakers, and users of these systems (Willis
et al. 2007; Giron-Nava et al. 2017; Hughes et al. 2017). These
studies are especially valuable for establishing baselines
and developing insight into population patterns and the
factors that influence them (e.g., Barry et al. 1995; Menge
et al. 2011). In particular, information on local vs. regional
or global environmental drivers of long-term population

dynamics can better inform management and conservation
efforts (Defeo et al. 2013; Ohlberger et al. 2016; Giron-Nava
et al. 2017). A more comprehensive understanding of the
predominant spatial and temporal scales of population
synchrony (when populations follow similar patterns), can
improve our predictions of how species or ecosystems may
respond to anthropogenic, biological, or physical stressors.

Nearshore estuarine ecosystems are affected by a variety of
natural factors (e.g., salinity, temperature, competition, larval
supply, etc.) and human activity (e.g., fishing effort, shoreline
armoring, pollutants, etc.). Due to their highly variable nature,
these potential drivers make discerning trends in estuarine
communities especially difficult (Dethier and Schoch 2005).
Despite these challenges, quantifying population level change
in estuarine communities is worthwhile because of the ecosys-
tem services and functions provided by species in these coastal
environments.

Bivalves are a particularly significant group of estuarine
species because of their ecological, cultural, and economic
importance. Among other factors, these molluscs are
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substantial consumers of phytoplankton (providing essential
filtration and biodeposition services); considerable economic
drivers of nearshore fisheries; cultural keystone species integral
to the health and wellbeing of Indigenous communities; and
valuable food sources for predators such as worms, fishes, and
birds (Garibaldi and Turner 2004; Newell 2004). Long-term
studies have illustrated the effects of some biological and physi-
cal variables on the population dynamics of estuarine bivalves.
For example, decadal studies in the Netherlands have demon-
strated important connections between recruitment and tem-
perature with clam species that are valuable to commercial
fishers as well as to shellfish-consuming birds (Philippart
et al. 2003; Beukema et al. 2010). Upwelling, river discharge,
and the North Atlantic Oscillation affect Portuguese lagoon
and coastal bivalve populations differently (Baptista and Leitão
2014; Baptista et al. 2014). Oyster population dynamics in New
Jersey, U.S.A. have shown regime shifts in response to disease;
and invasive bivalve species have been able to displace or out-
compete native bivalve species, generating functional changes
within particular ecosystems (Pranovi et al. 2006; Powell
et al. 2008; Novoa et al. 2016). While these studies and others
have contributed to a growing understanding of factors
influencing bivalve population dynamics, few utilize continu-
ous datasets spanning decades to describe change on relatively
large spatial scales (but see Baptista and Leitão 2014).

Improving our knowledge of population synchrony in
understudied bivalve species is especially important in regions
where these species support valuable fisheries and fill crucial
niches in ecological communities. For example, if managers
can better understand local or regional drivers of populations,
they may be able to predict when certain environmental
changes will negatively impact populations and adjust man-
agement regimes accordingly (e.g., Ward et al. 2010). Despite
the advantages of understanding population drivers of
bivalves, we do not know how multi-regional environmental
conditions structure population synchrony (or lack thereof )
in a system, although we do know that physical gradients play
a role in determining the biota found in estuaries
(e.g., Dethier and Schoch 2005; Dethier 2010).

The Salish Sea, a network of waterways between Washington,
U.S.A. and British Columbia, Canada, contains large populations
of native and non-native venerid clam species. These species
make up a significant portion of the biomass on pebble-sand
beaches and are the basis for popular recreational and commer-
cial intertidal fisheries in Washington (Dethier 2006). Four native
species (Leukoma staminea, Saxidomus gigantea, Clinocardium nut-
tallii, and Tresus capax) and one non-native species (Ruditapes phi-
lippinarum) compose much of the fisheries-targeted intertidal
clam biomass. While there is evidence from discrete data collec-
tions that L. staminea populations are declining throughout the
range of the species (Dunham et al. 2007; Shigenaka
et al. 2008; Novoa et al. 2016; Strickland et al. 2016), very little
quantitative information exists on continuous long-term popu-
lation trends of these clam species. Because the southern Salish

Sea can be divided into different sub-basins, which are largely
defined by oceanographic processes, the region can serve as a
natural laboratory within which to analyze spatial and tempo-
ral trends in bivalve population synchrony. Furthermore,
few studies have attempted to quantify what environmental
drivers (if any) influence the long-term trends seen in these
populations.

Multivariate time-series analyses are one way to describe
decadal change in populations while incorporating covariates to
detect potential relationships between environmental factors
and populations. Dynamic factor analysis (DFA) is a dimension-
reduction technique that can be applied to ecological time-series
data, such as animal biomass, to identify common population
trends and the degree to which individual populations are
associated with a specific trend (Zuur et al. 2003). Importantly,
DFA can be used to evaluate the relative degree of covariance
between a suite of ecological time series (e.g., Ohlberger
et al. 2016; Freshwater et al. 2017; Ruff et al. 2017). While DFA
has been used to study the effect of environmental parameters
on commercial catch rates of clams in Portugal (Baptista and
Leitão 2014; Baptista et al. 2014), to our knowledge, DFA has
never been applied to clam population data to better under-
stand population synchrony. Thus, DFA provides us with the
unique opportunity to quantify temporal and spatial relation-
ships in southern Salish Sea clam populations and improve our
ability to manage populations of these important species.

The primary goal of our research was to quantify popula-
tion trends in Salish Sea native venerid clam species. We used
DFA to address the following questions: (1) do native inter-
tidal clam populations exhibit synchrony across spatial and
temporal scales and (2) do any large-scale environmental fac-
tors influence these population trends? Specifically, we
assessed whether population trends in native clams grouped
by biological factors (e.g., inter- or intraspecifically) and/or
physical factors (e.g., southern Salish Sea sub-basins, individ-
ual beaches), and if the addition of various biological or physi-
cal covariates better described variability in clam biomass
across space and through time.

Material and methods
Site description

The southern Salish Sea contains the marine inland waters
of Washington, including Puget Sound and the Strait of Juan
de Fuca (Fig. 1). Puget Sound is a partially mixed estuarine fjord
system that can be separated into sub-basins primarily defined
by oceanographic processes (Khangaonkar et al. 2011) (Fig. 1).
Typical of estuarine fjords, these sub-basins are divided by a
series of sills which impact the flow pattern into and out of the
interconnected basins, with the majority of water entering
Puget Sound from the Strait of Juan de Fuca over a double sill
in Admiralty Inlet. Khangaonkar et al. (2011) demonstrated
that circulation patterns in Puget Sound can vary from well-
mixed, fast-moving flow (e.g., Admiralty Inlet) to more
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stratified flow in slower-moving sub-basins (e.g., Hood Canal,
Whidbey Basin); this stratification and mixing is created by tid-
ally averaged circulation and flushing (two daily unequal tides),
not tidal currents. Southern Hood Canal is known for its high
water residence time while Whidbey Basin has moderate reten-
tion times and Admiralty Inlet has a relatively short residence
time (max annual deep water residence time = 99, 41, and
23 d, respectively; Babson et al. 2006). Salinity and water tem-
perature patterns in Puget Sound are largely correlated with
local freshwater inflow and air temperatures, respectively, and
oceanographic properties are more influenced by local environ-
mental parameters than large-scale climate variations (Moore
et al. 2008). One important regional parameter is freshwater
input, which is heavily influenced by Skagit River discharge
(located in Whidbey Basin, Fig. 1) with peaks in the winter and
late spring/early summer (Babson et al. 2006).

Clam surveys
Following similar sampling methods, the Washington

Department of Fish and Wildlife (WDFW) has conducted sur-
veys on the same beaches since 1977 to determine clam bio-
mass for management purposes (Campbell 1996). All of these
beaches have dense clam populations capable of supporting
recreational clam harvest and, while substrate type varies by
beach, the locations share substrates preferred by venerid
clams in the Salish Sea (Kozloff 1983). For this analysis, we
selected 11 beaches with relatively consistent data collection
from 1989 to 2016, located within five different southern
Salish Sea sub-basins: Whidbey Basin, eastern Strait of Juan de
Fuca, Admiralty Inlet, Hood Canal, and South Sound (Table 1;
Fig. 1). These beaches had a minimum of 14 yr of discrete
sampling dates (mean = 23.5 yr) within the 28-yr study period
(Table 1). One of our study sites, Camano Island State Park

Fig. 1. The southern Salish Sea with locations of survey beaches and covariate monitoring stations. SST, sea surface temperature; CUI, coastal upwelling
index used for determining spring transition date; DNR, Department of Natural Resources land; SP, state park; CP, county park. Dashed double line indi-
cates sub-basin boundaries.
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(CA) has been closed to recreational clam harvest since 2002,
although ceremonial and subsistence tribal treaty harvest still
occurs at this location. Despite the proximity of several bea-
ches to one another (e.g., WP and ST), nearby beaches did not
always share physical attributes such as fetch, beach slope,
alluvial processes, freshwater and estuarine input, or wave
dynamics.

Annual beach survey methods (detailed in Campbell [1996]
but updated here and in Barber et al. [2012]) delineated an area
using property boundaries, the upper clam habitat boundary,
and the waterline (e.g., −0.6 m relative to mean lower low
water [MLLW]) or lower clam habitat boundary. For each
beach, surveys were conducted no more than 2 h before and
after the lowest low tide of the day and targeted the same tide
height (relative to MLLW) each year (Table 1). Within the
delineated area, various grids were designed for individual
beaches using evenly spaced transects (e.g., 30.5 m apart) set
perpendicular to the shoreline starting from a random point,
with quadrats also starting from a random point but then
spaced evenly (e.g., 12.2 m) along each transect line (e.g., grid
size = 30.5 × 12.2 m). Specific sites marked along transect lines
identified quadrat locations where a 0.093 m3 area was dug.
Clams within these quadrats were collected, identified, mea-
sured, and weighed whole-live or whole-frozen (Bradbury

et al. [2005] found a negligible, < 1%, difference between
whole-live and whole-frozen clam weight). Although the sur-
veys targeted legal-sized adult clams (> 38 mm), juvenile or
smaller adult clams were collected if observed. In 2002, WDFW
began a sub-sampling process on the beaches where clams from
only one out of every two or three quadrats were collected for
length-weight measurements. When shell valves were broken
and/or specimen weight was missing, beach or region-specific
length-weight models were used to calculate individual clam
weight (Bradbury et al. 2005; Barber et al. 2012). If a clam was
too broken to weigh or measure, we assigned that individual
the mean weight of its species from the survey that year.

Some of the beaches in this analysis contained physical fea-
tures (e.g., stream mouth, extremely soft silt, etc.) that pre-
vented surveying the entire beach from property boundary to
boundary; these areas were consistently skipped during the
surveys. Additionally, over the 28-yr span, WDFW had to alter
certain aspects of the survey design on some beaches includ-
ing minor loss of survey area due to changes in property
boundaries or natural changes in coastal geomorphology
(e.g., natural estuarine expansion, etc.); only beaches with
minor changes or no changes were included in this analysis.

We selected three native clam species for this study (butter
clams = S. gigantea, native littlenecks = L. staminea, and heart

Table 1. Beach survey information including the number of survey years utilized in dynamic factor analysis, the mean survey tide
height (relative to mean lower low water) and area, and the mean biomass (g/m3) for each of the three study species averaged across
all years.

Mean biomass (g/m3) � SE

Beach name Abbreviation Sub-basin

# of
survey
years

Mean
survey tide

height
(m) � SE

Mean
survey area
(ha) � SE S. gigantea L. staminea C. nuttallii

Camano Island State

Park

CA Whidbey 20 −0.82�0.14 5.70�0.27 2389.61�355.60 529.57�112.89 232.18�32.31

West Penn Cove WC Whidbey 16 −0.78�0.19 10.75�0.65 1343.38�222.43 716.58�117.89 157.28�23.03

Sequim Bay State Park

(South)

SS Strait of Juan

de Fuca

26 −0.51�0.11 1.51�0.12 302.14�56.78 1264.23�118.60 155.40�29.62

Sequim Bay State Park

(North)

SN Strait of Juan

de Fuca

24 −0.29�0.58 1.89�0.12 461.12�96.77 1343.52�84.11 127.62�19.22

Indian Island County

Park

I I Admiralty 25 −0.69�0.12 9.86�0.38 321.64�41.49 223.95�20.07 36.49�3.85

Port Townsend Ship

Canal

PT Admiralty 27 −0.67�0.25 4.22�0.46 789.61�127.28 145.72�11.13 52.36�9.23

Wolfe Property State

Park

WP Admiralty 26 −0.51�0.12 4.24�0.27 327.21�26.61 242.09�20.95 13.55�2.90

Shine Tidelands State

Park

ST Admiralty 28 −0.68�0.18 3.93�0.1 1013.52�111.83 483.03�45.84 56.40�8.13

Potlatch State Park PS Hood Canal 27 −0.88�0.14 13.36�0.63 134.96�21.25 103.67�9.59 39.95�5.65

Potlatch Dept. Natural

Resources

PD Hood Canal 25 −0.73�0.11 5.35�0.28 487.33�63.92 159.89�17.28 108.98�20.45

Hope Island Marine

State Park

HI South Sound 14 −0.84�0.28 5.77�0.32 450.74�39.92 119.71�16.49 9.06�3.48

SE, standard error.
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cockles = C. nuttallii) and calculated mean biomass (g/m3) for
each species and year a beach was surveyed. The non-native
Manila clam, R. philippinarum, was not included in the analy-
sis because this recreationally important species either was not
found on the study beaches or populations were enhanced on
beaches several years past the start of this analysis.

Covariates
The addition of covariates to this study was largely explor-

atory due to the lack of information on how environmental
factors may influence population dynamics of S. gigantea,
L. staminea, and C. nuttallii. Furthermore, covariates could
influence clam life history phases disparately, where some
explanatory variables are likely to influence larval survival and
others could affect adult populations. As a result, we tested
1–5 yr lags for each covariate applied to the model to deter-
mine appropriate lag structures for these three species. This
lag structure was selected to encompass the age of first repro-
duction through to 4–5 yr old clams which are generally larger
in size and less susceptible to external stressors. S. gigantea,
L. staminea, and C. nuttallii reach sexual maturity by 1, 2–3,
and 2 yr, respectively (Gallucci and Gallucci 1982; Cheney
and Mumford 1986; Chew and Ma 1987). We did not fit
models using annual lags of zero for the environmental cov-
ariates due to the presumed negligible effect on already settled
adult clams (i.e., > 5 yr old).

We selected the following seven covariates for use in the
model based upon (1) known effects of these covariates on dif-
ferent bivalve species located in other geographic regions or
(2) published literature demonstrating how environmental
variables influence physical and biological factors of the Salish
Sea: sea surface temperature (SST) and salinity (SSS), Skagit
River flow, air temperature, the North Pacific Gyre Oscillation

(NPGO), El Niño (ENSO), and spring transition from down-
welling to upwelling (Table 2). Our analysis only considered
the singular effects of covariates rather than their combined
effects.

Sea surface temperature was selected because several studies
on other clam species have shown that SST can affect clam
growth, recruitment, and mortality (e.g., Philippart et al.
2003; Beukema et al. 2009; Narváez et al. 2015). Sea surface
salinity is known to influence the availability of high-quality
particulate organic matter (Lowe et al. 2016), and SSS and river
discharge can affect clam growth and population structure
(e.g., Defeo and de Alava 1995; Marsden 2004; Baptista
et al. 2014). We included air temperature as a covariate
because intertidal bivalves are exposed to atmospheric condi-
tions twice a day during low tides (Dethier and Schoch 2005).
Although the SST and SSS monitoring station is located in the
Strait of Juan de Fuca (Fig. 1), we believe the variability in
these data still serves as a proxy of the variability in SST and
SSS experienced by more than half of our study beaches. Puget
Sound lowland air temperature and Skagit River flow were also
included in the model because variability in Puget Sound SST
and SSS is best explained by anomalies in these two respective
explanatory variables (Moore et al. 2008). Several studies have
linked the NPGO or ENSO with invertebrate recruitment or
productivity (Urban and Tarazona 1996; Menge et al. 2011;
Sydeman et al. 2013) and, importantly, the NPGO is a good
proxy for nutrient and chlorophyll levels which affect bivalve
food sources (Di Lorenzo et al. 2008). Shanks and Roegner
(2007) found that commercial Dungeness crab, Metacarcinus
magister, catch in Washington State was negatively correlated
with the date of the spring transition from downwelling to
upwelling. Because Dungeness crab predation can affect post-
settlement mortality of clams and since oceanic Dungeness

Table 2. Information on environmental covariates used in dynamic factor analysis including how data were summarized and used in
the model (e.g., mean winter, spring, and summer SST).

Covariate Data summary Station location Source

Sea surface temperature (SST) Seasonal means: Winter

(win) = Jan–Mar, Spring

(spr) = Apr–Jun, Summer

(sum) = Jul–Aug

Race Rocks, Strait of Juan

de Fuca

http://www.pac.dfo-mpo.gc.ca/science/oceans/

data-donnees/lightstations-phares/data/

RaceRocksDailySalTemp.txt

Sea surface salinity (SSS) Annual mean Race Rocks, Strait of Juan

de Fuca

http://www.pac.dfo-mpo.gc.ca/science/oceans/

data-donnees/lightstations-phares/data/

RaceRocksDailySalTemp.txt

Skagit River outflow (flow) Seasonal means: Spr = Mar–Jun,

Sum = Jul–Sep

Site # 12200500

Mt. Vernon, Washington

http://waterdata.usgs.gov/nwis/dv

Air temperature (AirTemp) Annual mean Puget Sound lowlands https://www.ncdc.noaa.gov/cag/time-series/

North Pacific Gyre Oscillation

(NPGO)

Annual mean from Jul to Jun NA http://www.oces.us/npgo/npgo.php

El Niño (ENSO) Annual mean from Jul to Jun NA http://www.esrl.noaa.gov/psd/enso/mei/table.html

Spring transition index (STI) Date of spring transition from

downwelling to upwelling

Fig. 1, off northwestern

Washington, “CUI Site”

https://www.pfeg.noaa.gov/products/PFELData/

upwell/daily/p06dayac.all
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crab are found within Puget Sound (Boulding and Hay 1984;
Dinnel et al. 1993), upwelling could indirectly affect clam bio-
mass in the southern Salish Sea. While other covariates such
as chlorophyll a (Chl a), pH, fishing effort, or bioturbator bio-
mass would have been extremely valuable in this analysis, to
the best of our knowledge, no continuous record of these cov-
ariates in the southern Salish Sea exists from 1989 to 2016.
Because DFA cannot work with missing data in the covariate
time series, we were limited to selecting environmental covari-
ates that had continuous datasets spanning 28 yr.

Modeling approach
In DFA, the time series of observed data are treated as a lin-

ear combination of one or more unobservable trends, which
are modeled separately as one or more random walk processes.
This framework is a form of a state-space model because it esti-
mates both observation variance and process variance sepa-
rately. Observation variance is commonly influenced by
measurement error due to non-exhaustive sampling designs,
as in the case of this study, whereas process variance is influ-
enced by environmental stochasticity. DFA has been shown to
be useful in its application to time series of ecological data in
evaluating both hypothesis-driven and exploratory analyses of
population covariance (Zuur et al. 2003; Jorgensen et al. 2016;
Freshwater et al. 2017).

The observed time series (y) are modeled as a linear combi-
nation of up to m shared hidden trends (x), explanatory vari-
ables (d), and observation errors (v):

yt ¼Zxt +Ddt +vt ð1Þ

where yt is an n × 1 vector of the observed natural log of clam
biomass for each of n = 33 (three species × 11 sites) discrete
surveyed populations at time t, Z is an n × m matrix of factor
loadings that indicate how much temporal variability in each
time series is explained by each of m unobserved trends mod-
eled, and xt is an m × 1 vector of hidden states at time t. For
this analysis, we considered two forms of Z, one in which
each population is assigned a unique factor loading on each of
the unobserved trends being modeled, and the other in which
populations of a given species occurring at beaches in close
geographic proximity (i.e., SS-SN, II-PT,WP-ST, PS-PD; Fig. 1)
are assigned equal factor loadings on each trend. Under the
first form, we assume that each population exhibits its own
unique pattern in biomass over time, regardless of location.
For the latter form of Z, we assume that clam populations of a
given species at each pair of neighboring beaches may be sub-
ject to similar demographic rates resulting in these popula-
tions exhibiting similar patterns in biomass over time.
Therefore, in this latter form, Z is constrained such that
respective rows representing populations of a species occurring
at a pair of neighboring beaches are assigned identical values.
Ultimately, models including this latter form of Z fit the

observed data better (Supporting Information Table S1); subse-
quent discussion will focus on this form.

Z is constrained further such that in the first m – 1 rows of
the matrix, the factor loadings in column j and row i are set to
zero where j > i. This constraint is necessary for model iden-
tifiability and does not affect the interpretation of model
results due to the post-fitting varimax rotation of the factor
loadings. The observation model assumes that the time series
have a mean of zero; therefore, the observed data are scaled to
a mean of zero and standard deviation of one. Because we
allowed only one covariate to be included in the model at a
time, individual covariates enter the model as dt, a 1 × 1 scalar
of the covariate value in year t, and D is an n × 1 vector of the
estimated effect size of the covariate on each population. Most
of the environmental covariates evaluated can influence envi-
ronmental conditions over broad spatial scales and may influ-
ence clam population dynamics similarly regardless of
geographic location. Therefore, D is constrained to include
only three unique parameters to represent the effect sizes on
each of the three species independent of location. Observation
errors, vt, are assumed to be distributed as a multivariate nor-
mal with n × 1 mean vector 0 and an n × n variance–
covariance matrix R. Because this study includes three differ-
ent species of clams that occupy different locations within the
intertidal zone, we constrained R such that the variance of
the observation errors (the diagonal elements of R) differed
between each species with no covariance among populations.
The unobserved trends (x) are modeled as m random walk
processes:

xt ¼ xt−1 +wt ð2Þ

where process errors, wt, are assumed to be distributed as a
multivariate normal with m × 1 mean vector 0 and an m × m
identity matrix I with a variance of one and no covariance
between each hidden trend. The vector of m initial states at
year t = 0 (x0) is distributed as a multivariate normal with a
mean of zero and an m × m variance–covariance matrix with
large variances (the diagonal elements are set equal to 10) and
no covariance between each hidden trend. The population-
specific model fits are the product of the factor loadings and
the trends in clam biomass (Z × x) plus the effects of any
environmental covariates. Model parameters were estimated
in a maximum likelihood framework using the MARSS pack-
age developed for the R programming environment (Holmes
et al. 2012, 2018; R Core Team 2017).

We used DFA to identify up to three common trends
among 33 time series of mean clam biomass distributed across
the study area spanning years 1989–2016 (Table 1; Fig. 1).
After fitting the trend-only DFA models, we fit models allow-
ing up to one covariate at a time in each model in addition to
the trends. We evaluated the data support for each model
using the Akaike information criterion corrected for small
sample size (AICc; Burnham and Anderson 2002). The model
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with the lowest AICc value was identified as the model with
the strongest data support although models with a ΔAICc less
than two were considered to have similar support. For each
model, after confirming that convergence was achieved for all
parameters, model residuals were examined to confirm
whether assumptions of normality and independent observa-
tion errors were met and that residuals were not autocorre-
lated (Supporting Information Figs. S1–S4). Variances for the
maximum likelihood estimates of model parameters were cal-
culated using the Hessian approximation (Harvey 1989).

A repository with detailed code and raw data can be
accessed at https://doi.org/10.6084/m9.figshare.6834935.v1.

Evaluating covariation in clam biomass
We relied on three complementary approaches to evaluate

covariation between clam populations with respect to their
variability in biomass. First, we quantified the correlation
(Spearman’s rank coefficient) between each observed time
series to determine whether there were any predominant pat-
terns of synchrony (e.g., species or regional). Second, for DFA
models with more than one trend, we applied a varimax rota-
tion to the factor loadings to maximize the variance along one
factor/trend. Factor loadings were rotated by multiplying the
inverse m × m rotation matrix (H−1) by the factor loadings
(H−1 × Z) and the trends were rotated by multiplying the
rotation matrix by the trends (H × x). The varimax rotation
assigns a higher factor loading (positive or negative) to those
trends that explained a larger portion of the temporal variabil-
ity for a specific time series. In cases where a specific popula-
tion received a strong negative loading on a trend, the

trajectory of the population was the inverse of the trend.
These steps enabled the matrix of population-specific factor
loadings to be more easily related to each of the trends.
Finally, following Jorgensen et al. (2016), we quantified the
correlation (Spearman’s rank coefficient) between each
observed time series of clam biomass after accounting for envi-
ronmental covariate effects and each of the trends. For each of
the populations, the correlations among the trends reflected
the degree of association between a population and a trend
such that higher correlations reflected stronger associations
between a population and a trend, whereas low correlations
indicated little or no association with a trend. We focused on
whether each of the three species were more associated with a
given trend by comparing the resulting distribution of correla-
tion coefficients for each species across each of the estimated
trends.

Results
The DFA model most supported by the data included three

common trends in biomass among the 33 clam populations
plus the effects of the NPGO lagged 4 yr (Table 3; Fig. 2). Of
the seven environmental covariates evaluated, the NPGO
added the most explanatory power, showing strong positive
associations with the biomass of each species. Generally, trend
1 was characterized by a cyclical temporal pattern in clam bio-
mass with peaks in biomass occurring in years 1997 and 2009,
followed by a decline through 2016. Trend 2 was characterized
by an overall decline in clam biomass throughout the dura-
tion of the time period from 1991 through 2016. Trend 3 was

Table 3. Top 15 DFA models ranked in order of decreasing data support (increasing AICc). Models were fit assuming shared observa-
tion variance among species but no covariance. Models without covariates were included in the analysis but received less support from
the data. Covariate abbreviations are defined in Table 2.

Delta AICc AICc weight

Median covariate effect size (95% CI)

Model k S. gigantea L. staminea C. nuttallii

3 trends + NPGO.lag.4 66 0.00 7.43E-01 0.38 (0.26,0.51) 0.15 (0.01,0.29) 0.19 (0.07,0.31)

2 trends + NPGO.lag.4 47 3.18 1.51E-01 0.24 (0.13,0.35) 0.1 (−0.03,0.23) 0.11 (0,0.23)

2 trends + airTemp.lag.3 47 7.01 2.23E-02 −0.09 (−0.19,0.01) −0.12 (−0.24,-0.01) −0.16 (−0.27,-0.04)
2 trends + NPGO.lag.5 47 7.56 1.70E-02 0.24 (0.12,0.35) −0.02 (−0.15,0.11) 0.03 (−0.09,0.15)
2 trends + STI.lag.1 47 8.91 8.62E-03 −0.07 (−0.17,0.03) −0.17 (−0.28,-0.06) 0 (−0.12,0.11)
2 trends + STI.lag.2 47 8.94 8.49E-03 −0.11 (−0.21,-0.02) −0.1 (−0.21,0.01) −0.12 (−0.24,-0.01)
2 trends + airTemp.lag.5 47 9.07 7.96E-03 0.07 (−0.03,0.17) 0.14 (0.03,0.25) 0.13 (0.02,0.25)

3 trends + NPGO.lag.5 66 9.87 5.34E-03 0.24 (0.13,0.35) −0.02 (−0.14,0.11) 0.03 (−0.08,0.15)
2 trends + flow_spr.lag.1 47 10.16 4.63E-03 −0.09 (−0.18,0.01) −0.15 (−0.25,-0.04) 0.04 (−0.07,0.16)
3 trends + airTemp.lag.3 66 10.63 3.66E-03 −0.1 (−0.19,0) −0.13 (−0.24,-0.02) −0.15 (−0.27,-0.04)
3 trends + STI.lag.2 66 10.63 3.64E-03 −0.13 (−0.22,-0.04) −0.11 (−0.22,-0.01) −0.13 (−0.24,-0.02)
2 trends + NPGO.lag.1 47 11.30 2.61E-03 −0.19 (−0.32,-0.06) −0.09 (−0.22,0.05) −0.01 (−0.14,0.11)
2 trends + sal.lag.3 47 11.93 1.91E-03 0.16 (0.04,0.28) 0.08 (−0.04,0.2) 0.02 (−0.1,0.14)
3 trends + NPGO.lag.3 66 11.95 1.89E-03 0.12 (0,0.23) 0.17 (0.03,0.3) 0.13 (0.01,0.25)

3 trends + airTemp.lag.5 66 12.33 1.56E-03 0.13 (0.02,0.23) 0.19 (0.09,0.3) 0.16 (0.05,0.27)

lag.#, number of years lagged.
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Fig. 2. Estimated trends (top row) and factor loadings per trend (bottom row) for the best-fitting model (three trends and the NPGO lagged 4 yr)
(Table 3). Negative factor loadings indicate that the trend is inverted. Bars for the factor loadings are color coded by species, S. gigantea = purple, L. stami-
nea = green, and C. nuttallii = blue. See Table 1 for a key to beach name abbreviations.
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characterized by an overall increase in biomass from 1989
until 2005 followed by a decline to below average levels
through year 2016 (Fig. 2).

For S. gigantea and L. staminea, we found strong evidence for
intraspecific population synchrony in biomass trends regardless
of geographic location within the southern Salish Sea (Figs. 3, 4).

Fig. 3. Dynamic factor analysis results for the best-fitting model: model fitted values (lines) and observed clam biomass (open circles) for S. gigantea
(purple lines), L. staminea (green lines), and C. nuttallii (blue lines). Shading indicates the 95% confidence intervals of the model fitted values. See Table 1
for a key to beach name abbreviations.
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Fig. 4. (a) Pairwise Spearman’s rank correlations among time series of observed clam biomass between 1989 and 2016 for S. gigantea, L. staminea, and
C. nuttallii. The color of each box shows the strength of the correlation between a population in row i and a population in column j of the matrix. See Table 1 for
a key to beach name abbreviations. (b) Boxplots summarizing the distribution of correlation coefficients among time series of observed clam biomass. Each rectan-
gle spans the interquartile range (IQR) of the correlation coefficients and the median is shown by a thick line. Whiskers include data within 1.5 × IQR of each quar-
tile beyond which outliers are shown as open circles.
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Except for C. nuttallii, correlations between populations within a
species were less variable than correlations between species
(Fig. 4). Specifically, correlations among populations of S. gigantea
were stronger (median correlation = 0.52), followed by
L. staminea (median correlation = 0.31), and the weakest for
C. nuttallii (median correlation = 0.01) (Fig. 4). In terms of DFA
factor loadings, S. gigantea either exhibited strong positive load-
ings on trend 1 and/or some combination of positive or negative
loadings on trends 2 and 3; this translated to an overall increas-
ing trend on eight out of the 11 populations, a decreasing trend
in the last decade for PS and PD, and an increase to relatively
stable population for HI (Figs. 2, 3). Since approximately
2012–2013, S. gigantea biomass appears to level off and then
decline on several beaches (CA, II, PT, WP, ST). In contrast, the
majority of L. staminea populations exhibited either strong posi-
tive loadings on trend 2 or a combination of positive loadings
on trend 2 and negative or positive loadings on trends 1 or
3. This translated to an overall declining trend for the majority
of beaches or a declining trend since 2005 for PS and PD
(Figs. 2, 3). Of the three species, C. nuttallii exhibited the largest
variation with respect to its associations with each of the three
trends across the 11 populations (Figs. 2, 3). Moreover, the only
incidence of beach-specific synchrony appears to occur between
the two Hood Canal sites (PS and PD), where all three species
exhibited an overall increasing trend in biomass from 1989
through 2005 followed by a decline through 2016 (Fig. 3).

Correlations between the observed time series and each of
the three modeled trends showed similar species-specific pat-
terns to the factor loading patterns (Fig. 5). S. gigantea

populations had the strongest positive correlations with trend
1 (median correlation = 0.55) indicating that populations were
generally associated with an increasing trend, whereas
L. staminea had the strongest positive correlations with trend
2 (median correlation = 0.67) indicating that populations were
generally associated with a declining trend. In contrast to the
other two species, C. nuttallii populations did not exhibit a
clear pattern of association with any of the three trends
although populations tended to be more correlated with trend
1 than the other two trends (median correlation = 0.13).

Discussion
Our results indicate that species-specific population syn-

chrony is more common in the southern Salish Sea than
beach or sub-basin specific patterns. The relatively strong
intraspecific synchrony in S. gigantea and L. staminea popula-
tions imply that large-scale factors are likely driving compo-
nents of the common trends seen in these species. The Moran
effect, where spatially distinct populations exhibit synchrony
due to large-scale density-independent factors (e.g., climate),
is one likely explanation for these population trends (reviewed
in Bjørnstad et al. 1999; Liebhold et al. 2004). The patterns for
C. nuttallii generally show lower synchrony, indicating that
local factors, rather than a phenomenon such as the Moran
effect, could be influencing population dynamics for this spe-
cies. It is also possible, however, that the lower overall abun-
dance of C. nuttallii on the beaches (Table 1) lead to greater
variability in the data, making it harder to detect a synchro-
nous pattern in biomass for this species.

The pronounced multidecadal decline in L. staminea is of
particular concern as similar declines of this species have been
reported from northern Baja California to the Aleutian Islands
(Dunham et al. 2007; Shigenaka et al. 2008; Novoa et al. 2016;
Strickland et al. 2016). These studies, however, relied on data
from discrete sampling events with many years (sometimes
decades) missing between samples. Conversely, our study used
relatively continuous data to document a pronounced biomass
decline following one of two similar patterns (gradual decline
since 1991 or slight increase to 2005 and then decline, Fig. 3).
To our knowledge this is the first study to combine evidence
throughout the range of this species and, importantly, con-
clude that L. staminea populations are likely declining across
their entire range. This result corroborates conclusions from
the previous studies but it likely alters how these studies may
have interpreted reasons for the decline. For example, Novoa
et al. (2016) suggests habitat loss, lowered salinity, and an
increase in non-native species as potential reasons for the
decline of L. staminea in southern California, while Dunham
et al. (2007) questioned whether overharvesting or other
human activities could explain the decline in British Colum-
bia. Suggestions such as these were based on more local fac-
tors, whereas our research implies that one or more large-scale
factor(s), such as disease, oceanographic processes, or climate

Fig. 5. Spearman’s rank correlations between the observed clam biomass
and the three trends produced from the best-fitting DFA model
(Model 1, Table 3) for S. gigantea, L. staminea, and C. nuttallii. Boxplots
summarize the distribution of correlation coefficients between each
species and trend. Each rectangle spans the interquartile range (IQR) of
the correlation coefficients and the median is shown by a thick line.
Whiskers include data within 1.5 × IQR of each quartile beyond which
outliers are shown as filled circles.
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change, are driving the concerning pattern of extensive bio-
mass loss seen in this species.

While the aforementioned studies documented the decline
in L. staminea through discrete sampling periods, only one of
these reports quantified changes in S. gigantea and C. nuttallii
populations. Using data from four unique sampling periods
between 1974 and 2012 in a coastal Oregon embayment,
Strickland et al. (2016) reported a decadal-scale increase in
subtidal S. gigantea densities with a slight decline in 2012.
Qualitative observations from Prince William Sound, Alaska
suggest that no major changes occurred in local S. gigantea
populations from 2000 to 2007 (Shigenaka et al. 2008). Our
results show two predominant patterns in S. gigantea popula-
tion dynamics in the southern Salish Sea. The first is a
sequence of gradually increasing biomass and the second is a
pattern of biomass increase until ~ 2005 followed by a decline
(Fig. 3). Results from the Oregon study appear to mirror our
findings regarding S. gigantea, quantifying a biomass increase
through time (Strickland et al. 2016). Our results, however,
also suggest that several populations that experienced
extended biomass increases are likely no longer increasing in
biomass (i.e., CA, II, PT, WP, and ST; Fig. 3).

C. nuttallii populations in Washington inland waters do
not appear to be exhibiting any major long-term synchronous
trend in biomass, which is also similar to what has been
observed in coastal Oregon populations (Strickland
et al. 2016). Whether these trends reflect population patterns
elsewhere within the range of these species is unknown due to
a lack of additional published literature. Factors affecting
recruitment success in another species of cockle, Cerastoderma
edule, have been shown to be highly site-dependent
(Magalhães et al. 2016). If this were the case for C. nuttallii, it
may explain the site-specific patterns in population fluctua-
tions described in this study.

One potential explanatory factor behind the observed pop-
ulation patterns is intra- or interspecific competition. While it
was beyond the scope of our study to experimentally test com-
petition hypotheses, we suggest that future studies consider
indirect interspecific competition, particularly between
L. staminea and S. gigantea, as a tenable explanation for the
respective decline and increase in biomass. As S. gigantea prefer
slightly lower elevations in the intertidal zone and bury dee-
per than L. staminea (Quayle and Bourne 1972; Dethier 2006),
perhaps L. staminea populations declined for reasons unrelated
to S. gigantea population change, relaxing indirect competition
for food between the species and allowing S. gigantea popula-
tions to expand. Sea level rise may also promote the extension
of S. gigantea populations to slightly higher elevations, where
they may increasingly overlap with L. staminea.

The presence of non-native clam species, particularly
R. philippinarum, Nuttallia obscurata, and Mya arenaria, could
also alter population dynamics of native species via direct or
indirect competition (Byers 2005; Pranovi et al. 2006; Bendell
2014). R. philippinarum populations are enhanced on

numerous public beaches within Washington State waters,
although they have not naturalized in many of the primary
clam habitat areas in the southern Salish Sea. Of the 11 bea-
ches included in this analysis, only one (WP) received signifi-
cant enhancement of R. philippinarum throughout the entire
study period. In a separate analysis, we found evidence for
negative competitive interactions between R. philippinarum
and L. staminea at this beach (Barber et al. unpubl.), support-
ing Bendell’s (2014) conclusion that enhanced populations of
R. philippinarum are capable of outcompeting L. staminea. Yet,
L. staminea populations exhibited similar patterns of decline
on beaches without R. philippinarum in this study (CA and PT)
and in Alaska, where the R. philippinarum range does not
extend (http://invasions.si.edu/nemesis/; accessed 17 July
2018). Thus, interspecific competition with non-native species
may play a much smaller role than factors capable of affecting
populations across broad geographic scales. While there is
potential that non-native clams affect individual beach popu-
lations of native clam species, it is unlikely that non-native
species are driving the population synchrony found in this
study, particularly the range-wide decline in L. staminea.

Although the covariate component of our analysis was
exploratory, we were surprised by some of the results. Based
on evidence from other bivalve population dynamics research,
we hypothesized that a relationship would be found between
clam biomass and temperature (e.g., Philippart et al. 2003;
Beukema et al. 2009; Magalhães et al. 2016) and/or salinity
(e.g., Defeo and de Alava 1995; Baptista and Leitão 2014; Bap-
tista et al. 2014), as both abiotic factors have been found to
influence overall clam fitness. Particularly in Puget Sound, we
know that decreasing salinity and increasing SST (along with
reduced wave energy) leads to a spatial decline in species rich-
ness, including bivalve populations (Dethier and Schoch
2005). Because air temperature and freshwater inflows to
Puget Sound are correlated with variability in SST and SSS,
respectively (Moore et al. 2008), it seems reasonable that these
covariates could also play a role in structuring clam biomass
(as suggested in Dethier et al. 2012). Moreover, Lowe
et al. (2016) found that temporally decreasing salinity in the
Salish Sea leads to an increase in the availability of higher-
quality particulate organic matter, an important food source
for bivalves. As our results demonstrate, air temperature,
Skagit River outflow, and SSS were correlated with clam bio-
mass in the top 15 models (Table 3). However, the best-fitting
model did not include these particular covariates; perhaps the
scale of our data was too coarse to detect the effects of more
localized variables. Conversely, the combined effects of these
environmental variables on clam biomass may be better repre-
sented by even larger-scale processes.

Of the covariates evaluated, the NPGO lagged 4 yr prior to
the observation year best explained variability in clam bio-
mass (Table 3). Biomass of all three species was strongly and
positively associated with the NPGO (Table 3). Fluctuations in
the NPGO, which are largely driven by regional and basin-
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scale ocean circulation patterns, explain variations in salinity
as well as nitrate and Chl a concentrations in coastal areas of
the North Pacific Ocean better than other large-scale climatic
patterns (Di Lorenzo et al. 2008). Although the relationship
between the NPGO and these environmental parameters is
well-established for coastal areas (Di Lorenzo et al. 2008), it
remains unknown how the NPGO affects oceanographic prop-
erties within the southern Salish Sea. For the purposes of this
study, we have assumed that the relationships described by Di
Lorenzo et al. (2008) are similar in our study area, although
we recognize that local environmental factors play a strong
role in shaping Puget Sound’s oceanographic properties
(Moore et al. 2008).

This is not the first study to document NPGO effects on
invertebrate populations. Decadal change in phytoplankton
abundance, as well as mussel and barnacle recruitment, have
been linked to the NPGO at multiple sites along the Oregon
coast (Menge et al. 2009, 2011). Moreover, Menge et al. (2011)
found that phytoplankton abundance was positively correlated
with mussel recruitment, indicating bottom-up forcing of mus-
sel populations. Although a reliable and continuous Chl
a dataset dating from 1989 to 2016 does not exist for our study
area, we know that the NPGO closely tracks Chl a and other
parameters likely to be important to clam recruitment, growth,
and survival in coastal areas. Perhaps the pattern between
southern Salish Sea clam populations and the NPGO is driven
largely by Chl a; where positive NPGO years lead to concomi-
tant changes in Chl a (Di Lorenzo et al. 2008), improving the
food source for young clams and their subsequent survival.

The lag time associated with the best-fitting covariate spec-
ifies that NPGO effects on clam populations will be evident
4 yr after the settlement process. We estimate that clams tar-
geted in the surveys analyzed here (adults > 38 mm) were gen-
erally over 2–3 yr old, depending on the species. Although
clam biomass from a single sampling event will be composed
of more than one age class of clams, it is logical that the larger

clams (i.e., ≥ 3 yr old) in the surveys drive the mean biomass.
To verify this, we used median clam length by beach to deter-
mine the relative age of clams in our study. S. gigantea,
L. staminea, and C. nuttallii median length ranged from
46–92 mm, 33–50 mm, and 29–68 mm, respectively (Table 4).
These lengths fall within the range of sizes necessary for
S. gigantea and L. staminea to be approximately 3–5 yr old,
although some estimates can vary depending on the tidal ele-
vation and location of the clams used in these length-age
studies (Quayle and Bourne 1972; Houghton 1973). C. nuttallii
may range in age from 2 to 4 yr old (Quayle and Bourne 1972;
Houghton 1973). Despite the variability in predicted age, a
4 yr lag is likely an accurate representation of the general age
of these surveyed species. Thus, the approximate age of the
surveyed clams supports the possibility that larvae and early
settlers are affected by large-scale environmental variables,
including, perhaps, the NPGO.

Many other large or small-scale drivers not included in this
analysis are likely to shape clam population patterns
(e.g., bioturbation, disease, ocean acidification [OA], eutrophi-
cation, predator populations, etc.). Ocean acidification can alter
bivalve neurological functioning, elevate metabolic rates, and
reduce shell growth and survivorship (Kroeker et al. 2013;
Waldbusser et al. 2015). Although OA is a global issue, upland
factors (e.g., land-use change and freshwater input), sediment
characteristics, and water property parameters (e.g., tempera-
ture, salinity, depth, alkalinity) can alter the magnitude of OA
effects on local carbonate chemistry resulting in highly variable
conditions at the local level (Feely et al. 2010). Another possible
driver, eutrophication, can effect bivalve populations in numer-
ous ways. For instance, eutrophication can lead to increased
ulvoid alga1 blooms, making clams more susceptible to preda-
tors as they decrease their burial depth (Auffrey et al. 2004).
Perhaps ulvoid mats, which typically are found higher in eleva-
tion, negatively affect L. staminea or C. nuttallii populations
and do not impact S. gigantea (which prefer lower elevations) as

Table 4. Median clam length (mm � min/max) by beach across all survey years (1989–2016). See Table 1 for beach abbreviations.

Length (mm)

S. gigantea L. staminea C. nuttallii

Beach Median Min Max Median Min Max Median Min Max

CA 66.0 6.9 112.0 42.4 3.5 86.1 68.0 6.4 101.0

WC 68.8 11.8 104.4 41.3 3.6 83.7 49.1 10.5 86.0

SS 75.1 15.0 105.9 40.3 7.0 73.6 54.2 12.7 83.8

SN 69.0 9.0 106.4 35.9 3.7 71.8 55.7 9.8 90.8

II 53.5 7.6 102.6 34.9 4.7 73.5 30.0 9.4 93.8

PT 77.0 8.1 119.6 49.8 5.3 110.1 49.8 9.7 102.8

WP 49.6 10.4 86.3 32.5 7.1 59.7 33.4 11.4 65.2

ST 54.5 5.7 104.4 36.2 4.2 79.4 35.9 8.1 79.2

PS 45.5 5.9 164.5 33.4 4.9 77.3 28.8 5.8 78.3

PD 51.5 6.6 93.1 36.2 5.4 98.7 30.7 10.7 77.4

HI 91.5 9.0 116.9 39.4 7.3 93.2 30.8 14.3 85.9

Barber et al. Intertidal clam population synchrony

S296



strongly. Finally, large-scale drivers, such as disease, are capable
of devastating a species of clam throughout its entire range.
Although Vibrio tubiashii has been implicated in significant
mortality events of bivalve molluscs (Travers et al. 2015), very
little literature exists on how this pathogen may affect these
three native clam species; we believe the possibility of disease
merits further research.

The trends documented in this study also allow managers to
rethink some potential drivers of change that have been pro-
posed as plausible reasons for declines in bivalve populations.
For example, decades of shoreline development have eradicated
approximately 692 km of Puget Sound’s coast (Simenstad
et al. 2011). Thus, one could hypothesize that L. staminea are
more sensitive to shoreline modification than the other two
species in our analyses. This hypothesis, however, is difficult to
support when two other studies documenting declines in
L. staminea occurred along relatively undeveloped shorelines in
Alaska and British Columbia (Dunham et al. 2007; Shigenaka
et al. 2008). Additionally, it seems plausible that heavily har-
vested beaches would show similar population patterns if over-
fishing was a problem. Yet the two most heavily harvested
beaches in this study, WC and PS, show distinctly different
interspecific population patterns by beach. Furthermore,
S. gigantea and L. staminea populations show intraspecific syn-
chrony between a beach closed to fishing (except for incidental
tribal harvest, CA) and fished beaches (all other study beaches),
indicating that overharvest is probably not driving the popula-
tion patterns described in this study.

Our finding that spatial and temporal trends in biomass are
species-specific suggests that the species composition of native
clams in Washington waters is driven by both large-scale and
local factors. This highlights the complex nature of estuarine
systems and the diverse response within a group of organisms
to similar environmental conditions. Future investigations
could complement our analysis by addressing how local factors
impact synchrony in different clam populations. This informa-
tion could assist managers tasked with the challenge of setting
harvest limits on more abundant species while trying to con-
serve less abundant species undergoing persistent declines.
More broadly, however, our study demonstrates the value of
long-term monitoring programs on benthic marine invertebrate
populations. These relatively rare programs, combined with
data-driven analyses, should improve scientists’ ability to deter-
mine the difference between episodic change quantified within
shorter temporal scales and more persistent ecological change
across multidecadal scales. Such information will be vital in
tracking the biological impacts of global changes at the local
level and can promote the sustainable management of inverte-
brate populations under future ocean conditions.
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